为避免传输中严重的信道间串扰,DWDM要求激光光源的谱宽窄到埃的量级,即单频LD(激光二极管)。并要求LD的工作波长极为稳定,频率漂移范围不超过几兆赫。LD的工作波长可连续调谐。从目前发展趋势看,以分布反馈DFB-LD和半导体电光调制器(动态高频调制)为基础的集成光源成为首选,开发出多种新结构LD,可用作光通信光源,实现在一根光 以光电器件为基础的光通信正朝高速、宽带化方向迅猛发展,N??0G的密集波分复用DWDM技术的开发与光层面上的关键网络设备取得群体性突破。为避免传输中严重的信道间串扰,DWDM要求激光光源的谱宽窄到埃的量级,即单频LD(激光二极管);并要求LD的工作波极为稳定,频率漂移范围不超过几兆赫;LD的工作波长可连续调谐;高速、低啁啾,扩大传输容量,提高传输距离。从目前发展趋势看,以分布反馈DFB-LD和半导体电光调制器(动态高频调制)为基础的集成光源成为首选,开发出多种新结构LD,可用作光通信光源,实现在一根光纤上传输多个波长信号。
DFB-LD
F-P(法布里-珀罗)腔LD已成为常规产品,向高可靠低价化方向发展。DFB-LD的激射波长主要由器件内部制备的微小折射光栅周期决定,依赖沿整个有源层等间隔分布反射的皱褶波纹状结构光栅进行工作。DFB-LD两边为不同材料或不同组分的半导体晶层,一般制作在量子阱QW有源层附近的光波导区。种波纹状结构使光波导区的折射率呈周期性分布,其作用就像一个谐振控,波长选择机构光栅。利用QW材料尺寸效应和DFB光栅的选模作用,所激射出的光的谱线很宽,在高速率调制下可动 态单纵模输出。内置调制器的DFB-LD满足光发射机小型、低功耗的要求。
DFB-LD多采用Ⅲ和Ⅴ族元素组成的三元化合物、四元化合物,在1550nm波段内,最成熟的材料是InGaAsP/InP。新型AIGaInAs/InP材料的研发日趋成熟,国际上仅少数几家厂商可提供商用产品。优化器件结构,有源区为应变超晶格QW。有源区周边一般为双沟掩埋或脊型波导结构。有源区附近的光波导区为DFB光栅,采用一些特殊的设计,如:波纹坡度可调分布耦合、复耦合、吸收耦合、增益耦合、复合非连续相移等结构,提高器件性能。生产技术中,金属有机化学汽相淀积MOCVD和光栅的刻蚀是其关键工艺。MOCVD可精确控制外延生长层的组分、掺杂浓度、薄到几个原子层的厚度,生长效率高,适合大批量制作,反应离子束刻蚀能保证光栅几何图形的均匀性,电子束产生相位掩膜刻蚀可一步完成阵列光栅的制作。1550nm DFB-LD开始大量用于622Mb/s、2.5Gb/s光传输系统设备,对波长的选择使DFB-LD在大容量、长距离光纤通信中成为主要光源。
同一芯片上集成多波长DFB-LD与外腔电吸收调制器的单芯片光源也在发展中。研制成功的电吸收调制器集成光源,采用有源层与调制器吸收层共用多QW结构。调制器的作用如同一个高速开关,把LD输出变换成二进制的0和1。在一块芯片上形成40种不同的折射光栅,波长1530~1590nm的40路调制器集成光源,信道间隔为200GHz。其开发目标是集成100个发射波长的LD阵列,以进行9.5THz超大容量的通信。
VCESL
VCESL(垂直腔面发射激光)二极管的特点如下:从其顶部发射出圆柱形射束,射束无需进行不对称矫正或散光矫正,即可调制成用途广泛的环形光束,易与光纤耦合;转换效率非常高,功耗仅为边缘发射LD的几分之一;调制速度快,在1GHz以上;阈值很低,噪声小;重直腔面很小,易于高密度大规模制作和成管前整片检测、封装、组装,成本低。
VCSEL采用三明治式结构,其中间只有20nm、1~3层的QW增益区,上、下各层是由多层外延生长薄膜形成的高反射率为100%的布拉格反射层,由此构成谐振腔。相干性极高的激光束最后从其顶部激射出。目前多家厂商有1550nm低损耗窗口与低色散的可调谐VCSEL样品展示。1310nm的产品预计在今后1~2年内上市。可调谐的典型器件是将一只普通980nm VCSEL与微光机电系统的反射腔集成组合,由曲形顶镜、增益层、反射底镜等构成可产生中心波长为1550nm的可调谐结构,用一个静电控制电压将位于支撑薄膜上的顶端反射镜定位,改变控制电压就可调整谐振腔体间隙尺寸,从而达到调整输出波长的目的。在1528~1560nm范围连续可调谐43nm,经过2.5Gb/s传输500km实验无误码,边模抑制优于50dB。如果发射波长在1310~1550nm之间的VCSEL能够商业化生产,将会进一步促进光通信发展,使光网络更加靠近家庭。已有许多公司公布了这种波长的VCSEL原型机的一些技术数据。
DBR-LD
DBR-LD(分布布拉格反射器激光二极管)最具代表性的是超结构光栅SSG结构。器件中央是有源层,两边是折射光栅形成的SSG区,受周期性间隔调制,其反射光谱变成梳状峰,梳状光谱重合的波长以大的不连续变化,可实现宽范围的波长调谐。采用DBR-LD构成波长转换器,与调制器单片集成,其芯片左侧为双稳态激光器部分,有两个激活区和一个用作饱和吸收的隔离区;右侧是波长控制区,由移相区和DBR构成。1550nm多冗余功能可调谐DBR-LD可获得16个频率间隔为100GHz或32频率间隔为50GHz的波长,随着大约以10nm间隔跳模,可获得约100nm的波长调谐。除保留已有的处理和封装工艺外,还增加了纳秒级的波长开关,扩大调谐范围。
FG-LD
FG-LD(光纤光栅激光二极管)利用已成熟的封装技术,将含有FG的光纤与端面镀有增透膜的F-P腔LD耦合而成可调谐外腔结构的激光器,由LD芯片、空气间隙、光纤前端的光纤部分组成,光学谐振腔在光栅和LD外端面之间。LD的内端面镀有增透膜,以减小其F-P模式,FG用来反馈选模,由于其极窄的滤波特性,LD工作波长将控制在光栅的布拉格发射峰带宽内,通过加压应变或改变温度的方法,调谐FG的布拉格波长,就可以得到波长可控制的激光输出。FG-LD制作组装相对简单,性能却可与DFB-LD相比拟,激射波长由FG的布拉格波长决定,因此可以精控,单模输出功率可达10mW以上,小于2.5kHz的线宽,较低的相对强度噪声与较宽的调谐范围(50nm),在光通信的某些领域有可能替代DFB-LD。已进行用于2.5Gb/s×64路的信号传输的实验,效果很好。
GCSR-LD
GCSR-LD(光栅耦合采样反射激光二极管)是一种波长可大范围调谐的LD,其结构从左往右分别为增益、耦合器、相位、反射器区域,改变其增益、耦合、相位和反射器各个部分的注入电流,就可改变其发射波长。此LD波长可调范围约80nm,可提供322个国际电信联盟ITU-T建议的波长表内的波长,已进行寿命试验。
MOEMS-LD
MOEMS-LD(微光机电系统激光二极管)用静电方式控制可移动表面设定或调整光学系统中物理尺寸,进行光波的水平方向调谐。采用自由空间微光学平台技术,控制腔镜位置实现F-P腔腔长的变化,带来60nm的可调谐范围。这种结构既可作可调谐光器件,也可用于半导体激光器集成,构成可调谐激光器。
其它类型LD
光模块激光二极管内置MQW F-P腔LD或DFB-LD、控制电路、驱动电路,输出光信号。其体积小,可 靠性高,使用方便,在城域网、同步传输系统、同步光纤网络中都大量采用2.5Gb/s光发射模块,10Gb/s、40Gb/s处于初期试用阶段,向高速化、低成本、微型化发展。利用高分子材料Polymer折射率随温度变化特性,加热器改变高分子材料光栅温度,引发其折射率和光栅节距变化,使其反射波长改变。已研制出Polymer-AWG波长可调的集成模块,有16个波长通道,波长间隔200GHz,插损8~9dB,串扰-25dB。用一个高速调制器对每个波长进行时间调制的多波长LD正处于研制阶段。这是一种全新的多波长和波长可编程光源。 |